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1. INTRODUCTION. The Toda Lattice appeared originally [1] 

as a mechanical system of particles on the line governed by a 

certain type of nearest neighbor interaction. With the work of 

Flaschka [2], the relation with Lie group theory, particularly 

earlier work by Arnold [3] on the rotating rigid body and its 

generalizations, came into the foreground; this relation has been 

extensively developed since, most notably in recent work by 

Kostant; Olshanetsky and Perelomov; Khazdan, Kostant and Stern- 

berg; and others. In these approaches, the generalizations of 

the Toda Lattice are developed in terms of the natural symplectic 

structure on the cotangent bundle of a Lie group. 

Now, our present-day notion of "symplectic structure" has its 

roots in Elie Cartan's book "£eoona sur lea invariant integraua." 

The central notion here was that of Cauohy oharaateriatio of one 
or more differential forms. A more definitive version of this 

concept was given in Cartan's later book "Lee eyatemee differ- 
entiabllea exterieuree et leura appliaationa gecmetviquea,"    I 

have set myself the task of developing Cartan's beautiful ideas 

in the context of contemporary mechanics and physics [8]. In 

this paper I want to Indicate how the work cited above (and some 

of my own[5]) may be viewed in a Cartanian framework. In addi- 

tion to the obvious advantage of geometric unification, for its 

own sake, I believe that certain models with interesting 
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ROBERT HERMANN 

properties might turn up later when this analysis is pushed 

further. 

First, let us review Cartan's ideas, using the standard nota- 

tions of differential geometry on manifolds [ ], Let M be a 

manifold, D(M) denotes the graded associative algebra of dif- 

ferential forms on M. d denotes exterior derivative.* An 

exterior» differential eyetem,    E, is an ideal of D(M/'-which 

is closed under d. Given such an E, the vector .fields V on 

M such that 
i(V)(E)cE (1.1) 

are said to be Cauahy ahamateristio for   E. {i(V) denotes the 

operation of contraction with respect to the vector field V.) 

The set of all these vector fields defines a foliation for M. 

(We shall suppose that the foliation is non-singular in the 

sense that its dimension is constant at each point of M.) If 

the foliation is Regular, i.e. if a quotient map n: M -♦ H' 
exists whose fibers are the leaves of the foliation and such 

that M' is a manifold, then the system E lives on M', in 

the sense that there is an exterior differential system E' on 

M' such that: 

E is generated by n^E') . 

Many applied problems involve determining something about the 

Cauchy characteristic foliation and the quotient space M'. In 

problems deriving from mechanics and the calculus of variations, 

E is generated by a 2-differential form u such that: 

du o 0 . 

In this case, it Is readily seen that there is a 2-differential 
on   M'    such that: form u' 

du' 0 and u = v*(u') 

E' is generated by u'. Since w' has no characteristics vec- 

tors, it defines M' as a symplectic manifold. Thus we see 

that Cartan's approach suggests a different insight than that of 

other recent work on geometrical mechanics; it is not the mani- 

fold on which the equations of motion are initially defined that 

:,      ,H 
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admits the symplectlc structure, but the set of all trajectories. 

Of course, two forms us   and u, could have the same Cauchy 

characteristic foliation, thus providing two symplectlc struc- 

tures on the trajectories. 

One obtains the more traditional equations of mechanics and 

the calculus of variations by choosing certain local canonical 

forms for the 2-difterential form w. Typically, these involve 

natural coordinate systems on the tangent and cotangent bundles 

to configuration manifolds Q. However, another feature of Car- 

tan's work is what he called the method of the moving frame. 
I.e. the choice of bases of 1-dlfferential forms which are not 

the differentials of coordinates but which are better adapted to 

expressing the natural geometric properties of the situation. 

In this paper I will essentially be adapting this "moving frame" 

approach to the study of the generalized Toda Lattices. I will 

start off by assuming that u has a certain form in terms of 

certain moving frames for M, Certain general equations will be 

obtained. In order to understand these equations, I will then 

specialize to the situation of the work cited above (where M 

is a submanifold of the cotangent bundle to a Lie group). I 

hope to present an analysis of other situations in a later work. 

2. CAUCHY CHARACTERISTICS OF CLOSED 2-DIFFERENTIAL FORMS. 

First, we shall review certain differential-geometric funda- 

mentals [8]. Let M be a manifold, and let u be a closed 

2-differentiäl form on M. If v e T(M) is a tangent vector to 

M at a point p € M, the inner product or contraction of u 

by v is denoted as i{v)(a)); it is a 1-covector at p. I.e. 

ao^element of the dual space to the tangent space to M at p. 

Similarly, if V is a vector field on M, i(V)(a3) is defined 

as a 1-differential form on M. 

DEFINITIOM. A imgent vector   v € T(M) io said to he Cauzhy 

aharaateriatia for   ui   if   1(V)(a)) = 0. Similavly, a tangent 

vector field   V io caid to be Cauahi/ akaractcvistio if 

KvHu.) = o. 

1 
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104 ROBERT HERMANN 

In this paper we shall work with a special choice of the mani- 

fold M and the closed 2-dlfferentlal form. Namely, suppose 

that we are given the following data: 

A vector space X and a manifold Y, such that 

M » X x Y. 

An absolute parallelism on Y defined by a basis 0a, 

1 S a, b ä m, of 1-differential forms on Y. 

A basis Xj, 1 £ 1, j S n, 

of the linear functions on   X. 

Adopt the summation convention on the indices given above. 
In addition, suppose that   m>n; Introduce the following addi- 
tional Indices and the summation convention on these Indices: 

n + 1 s u,   v £ m. 

Let f?c be the atruature funotiona of the absolute parallelism, 

1e., the functions on Y such that: 

d9a • f Jce
b A ec . 

Let 6 be the automorphism group of the absolute parallelism, 

i.e. the group of dlffeomorphism g:Y •♦ Y such that: 

g*(9a) • ea . 

It Is known that G is a Lie group and that it acts simply on 

Y, i.e. the orbits of G can be identified with 6 itself. We 

shall suppose that the orbit space 

Z = G\Y 

is a manifold and that the quotient map   Y -» Z   is a submanlfold 

map.   The structure functions   f^   are constant on the orbits 
of   6.   hence are pull-backs under the quotient map of functions 
on   Z.   We shall make no notational distinction between these 

functions. 
Now, set: 

u « d^e1) . 

■' ^WtMK ariwmniiniiil——■pawtMMl 
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Let us now compute the Cauchy characteristic vectors of u, 

using the relations given above. 

u = dx1 A 9 + x^e 

Our job Is to put the differential form   u   into Its algebraic 

canonical form.   To do this, note that 

to = (dx1 -*j
f

a^ea) A 01 

Set: 

ai - dx. - xjf^e8 

u)' = x^^ eu A ov . 

Then, we have the definitive formula: 

u = a. A 6   + a)'  , (2.1) 

where the differential forms on the right hand side of 2.1 are 

linearly independent. Thus we have proved the following result: 

THEOREM 2.1. Tka Cauahy uharaateviatia vector fields    V of 

u satisfy ths following equation: 

(2.2) 

COROLLARY. The dimemion of the Cauahy okaracteriotia tangent 

vectors to u is equal to the dimension of the Caimhy aharaetcr- 

istia tangent veatora to   a)'. 

We can now work out the equations for the Cauchy characteris- 

tic vector.field   V   defined by relation (2.2) in more detail. 

First, let us work with the second relation on the right hand 

side of (2.2).   Suppose that we Impose the following relations: 

eu(v) (2.3) 

where the h are functions of the x's and the f's. They must 

then satisfy the following condition: 

-'■■..j^.j-j,. v ■^Jiw-.^^^^^iiiitjtiiLJLi;«-.».^: :,,,;;;iu. 
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Vi/ ■" (2.4) 

With this choice for these functions, we see that V Is com- 

pletely determined by the first part of relations 2.2: 

e^V) « 0 , 

V(x1) = XjfJ. üu(V) 

x.f j ui (2.5) 

Here Is an Important geometric property of the Cauchy charac- 

teristic vector fields of this form which is proved by the rela- 

tions described above: 

THEOREM 2.2.    ict    V   ba a Caualqi .!lm-.Kitei'iti!!,? motor j'iotl 

of   ui   given by relations 2.3-,5.    !jct   ^M -» X ^ Z   hr. the nap 

whiah aenda the point    (x,y) € X * Y - M    f>(.';<i    (x,z),    uh.uv   z 
io the orbit of   G    aoting on    Y    ulr'.-i: ^.•nitihw thr paint   y. 

Then,  the vector fietl   V   projects futv    X ^ Z,   i.e.  there ir. 

a veator field   V  o«    X x Z   suoh that    f   octuh: t>u,4t orbit 

ouwa of V   into an orbit curve of   V. 

In practice, we often start off with   V    and construct   V. 

Notice that it is essentially this construction which defines 

the symplectic structure for the orbit curves of   V;  the situa- 

tion is simplest in case   Z   reduces to a point, i.e. in case 

the   f's   are constants.   This means that   Y   is equal to the 
Lie group   G   itself, with   G   acting by left translation.    In 

this case, we shall see that the equations for the orbit curves 

of  J/.'   are the differential equations for the Toda Lattices and 

their.generalizations. 

3.    SPECIALIZATION TO THE ABSOLUTE PARALLELISM DEFINED BY THE 
LEFT INVARIANT DIFFERENTIAL FORMS ON A LIE GROUP.    Let us now 

apply this Theorem 2.1 to the case that the   ea   are the left- 
invariant Cartan-Maurer forms for a Lie group   G,   and the   x 

wm-vemammmmmß 
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are the dual linear coordinates for the dual vector space % 

of the Lie algebra of   G.    Consider   X   as fl * G,   where ,/   is 
the linear subspace of   'S     defined by the relations   x - 0. 

Let   ,/'   be the orthogonal complement of   ,/    In   'S  . 

THEOREM 3.1.   At a point   X   of   ,/,  the dimenoion vf the 

Cauahtj aharaoteriotia vcatora of the 2-differcntial forn- w'    is 

equal to the dünenaion of the ohavaoterietiti mdmpaoc oftkc 

ekeu-aymatria Mlincai' form 

(J^Jg) -xCCJpJg]) 

on    £'.   An element   J, 6 ^Jf'   is Cauahj aharaatcriotio for 

the form   u'   at   X   iff tlw follcuing etondition is aatioficd: 

coAdJ^x) Cjr (3.1) 

REMARK.   coAd   means the dual of the adjoint representation 

of the Lie algebra   «, i.e. 

coAd(A)(x){B) * -x([A,B]) 

for   x €  « ;    A.B € '.</   . 

4. FLASCHKA VECTOR FIELDS ON VECTOR SPACES. The conditions 

found for Cauchy characteristic vector fields in previous sec- 

tions are sufficiently interesting and Important that it is 

worth our while to pause and make some general definitions. Let 

» be a real Lie algebra. Let «  be its dual space. Let X 

be a linear subspace of ® . Let X' be the orthogonal comple- 

ment of X In « , I.e. the set of elements Ae« such the 

X(A) - 0. ^ 

DEFINITION. A I'laaahka map for the vector epaae   X is a map 

F:X -» X' euah that the following condition is satisfied: 

coAd(F{x))(x) € X (4.1) 

for all   x € X. 

wSilawT. 1W>H-^F4'-i-....,-i J^.j.fcM.-iAii f, .t-,'.', .i ^ .„ ü^^^-..'&lfe^.j^ 



'"'"i" "j'mpwMi ^^mmmm 

WBHmmmmmmm 

i mm mm   ' ' 
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With condition (4.1) satlslfed, we can define a vur.tnr field V 
on X considered as a manifold. Since X is a vectiw  space, 
a vector field is just a map X -♦ X. I.i't us then set: 

V'(x) « coAd(F(x))(x) (4.2) 

for all x € X. 
Condition (4.1) of course Is precisely tlMt which guarantees 

that   V    defined by formula (4.2) is indeed a wi'll-defined vec- 
tor field on   X.    We Shall call    V    a r;^: ■/.':,! :n,-Mr/icM, 

since Flaschka's work on the Toda Lattice fits into this frame- 

work very naturally. 
The orbit curves of the vector fields   V    are then the solu- 

tions   t -» x(t)   of the following differential equations: 

dx/dt = coAd(F(x(t)){x{t)) (4.3) 

Conversely, if we start off with the nonlinear differential equa- 
tions 4.3 (which would be the normal  thin'j to do) wi; would have 

the following properties: 

THEOREM 4.1.    Conaider the eyetcm of oriinarii  Uff.-ivntial 

equationa defined by relations 4.3, i.vV/v   F   :'« n Flasshka map, 

aa defined above,    Conetruot the wmifohi   M   as   X x G,   and 

aonatruot the 2-diffevential form   w   on   M   nü in ttm pvaviona 

aecition.    Then, the aolution cmvcu of equation 4.3 arc the 

projection in   X   of Cauahy oharaoto'icitio CJUWCJ of   ai.    In 

partioular, thio iiipoaee in a natural tmy a symphuitif etrnatuvc 

on the space of aolutiona of 4.3. 

So far we have been working with an arbitrary lie algebra   W. 
For a reductive Lie algebra. I.e. one for which   'S   and 'ß     are 

natura.lly isomorphlc, the formulas can be readily recast so as 
to be closer to those in the applied mat hematics literature. 

5.    THE FLASCHKA MAPS AND VECTOR FIELDS FOR REDUCTIVE LIE 
ALGEBRAS.   Let us now make the assumption that there is a non- 
degenerate symmetric bilinear form  .xf on the (finite dimensional) 

äJSiÄi.A.iiläüi JM^irrtfHMrftiii »meiimtiuaajmmämaitlitiiultätätm ——■—.     ■  - |    Bttt 
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Lie algebra 'ft which Is invariant under the adjoint repmenta- 
of 'ß on itself. .^ sets up an isomorphism between T, and its 
dual space Ä . Let ,/ be a linear subspace of 'G ; under this 
identification of 'Äd with », / is identified with a linear 

subspace of 'ß. The orthogonal subspace that wo denoted as /' 
Is then identified with the orthogonal complement of /'with 
respect to the form   .*?,   i.e. v 

,/' = (A£,/:äff(A.f/) = 0} 

A Flaschka map is then a map 

such that the vector field 

V(A) = [B(S).A] 

Is tangent to ./. 
Here are some ways of constructing such maps. 

6.    EULER-ARNOLD VECTOR FIELDS ON LIE ALGEBRAS.    In this sec- 
tion we shall review certain methods by means of which differen- 

tial equations may be defined which have some of the properties 
suggested by the classical rotating rigid body and the recent 

work on Toda Lattices.   These differential equations are essen- 

tially defined by means of certain types of vector fields on Lie 

algebras. 
Let   «   be a Lie algebra.    Since   W   Is itself a vector space, 

a vector field (in the sense of manifold theory) is a map 
V:'ä-»'ä.   The orbits or integral curves of such a vector field 

are the curves   t -♦ A(t) in  ®   such that 

dA/dt « V{A(t)) . (6.1) 

Such a vector field will be said to bo of Eutw-AmoUi typo 

If It is of the following form 

V(A) = [B(A).A] (6.2) 

where B is some map from 'Q  to 'ß. 

aatifcaataMHiütSaiSiiyjj 
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200 ROBERT HERMANN 

In [5] I have shown how the construction of MRII .I   i?   and 

V   given in the original Claschka work on tho Tod.i Lat.ticp may 

be describea in teras of Ctrtain   ffgt\ic«-u-    ,•'.^TM stcx^tutvs 

on Lie algebras.    Here Is a more systematic study of this mater- 

ial. 

7.    JACOBI TRIPLES OF LIE ALGEBRAS.    Let « be a real Lie 

algebra.    A triple   (« + ,»0,«")   of linear subspaces of  «   Is 

said to defined a Jaoobi triple If the following conditions are 

satisfied: 

[»0.'fi0]c«0 

[«0.«+«-]c»+'- V-]) 

[«+
)«-]c  »0    . 

The linear subspace 

/ =. »+ + «" + 'Ä0 

spanned by these three subspaces Is called the Scwhi ouhapaae 

of ® associated with the Jacobl triple. 

EXAMPLE. Jacobl Matrices. Let V be a vector space and let 

V, V  be linear subspaces of V. Let 'G   be the Lie algebra 
(under commutator) of linear maps V 

ceO 

i+.- 

V.    Set: 

{A€ »: AiV^ c V1.      i = 1 n} 

(A 6» : A(Vi) c V1+j_r    i = 1 nl 

-+.- (Thus   'S •"   are the shift up and shift down operators.)    It is 

obvious that the commutation relations 7.1 are satisfied.    If the 

VT....IV_   are one dimensional linearly independent subspaces 

which span   V,   and If a basis Is chosen for   V   consisting of 

vectors from these subspaces, it Is clear that the operators in 

#   are represented by classical Jacobi matrices, i.e.    nxn 

matrices with non-zero entries only on the diagonal, sub, and 

super diagonal lines.    It Is the point of view developed in [5] 

I 

1 i 
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that the corresponding gradation of 'ß   «lives rise to the Toda 
Lattice phenomenon. 

8. SIMPLE ROOT SYSTEMS FOR SIMPLE LIE ALGEBRAS AND JACOBI 

TRIPLES. It Is known that the Toda Lattice models are closely 

related to the algebraic properties of Lie algebras, particularly 

the properties of the simple root systems of semi simple. Lie alge- 

bra. In this section I will show how the simple root systems 

generate Jacobl triples. 

Let 'Ä be a finite dimensional simple Lie algebra. For the 

moment, assume that the field of sealers 1s the complex numbers. 

We shall return to the case of the real numbers later on. It 

will of course bo assumed that the reader knows basic semisimple 

Lie algebra theory. 

Let V  be a Cartan subalgebra of ®. Ad V    acting In « 
is then completely reducible. The non-zero eigenvalues of Ad f, 

considered as linear forms on V,   are called the roots of the 
Lie i-Tgebra. Let r « dim *. (r is the rank of the Lie alge- 

bra »). A set X,,...,X  of roots is said to define a simple 

root system if the following conditions are satisfied: 

Each root X can be written as a linear combination 

of the ^.....X  with coefficients which are inte- 

gers, and which are simultaneously all non-negative 

or non-positive. -X. -X  are roots. 

That such simple root systems exist, and serve to determine 

the isomorphism class of the Lie algebra, is a well-known fact 

of Lie algebra theory. 

Fix such a simple root system. Let (Aj, 1 = l,...,r be 

a collection of root elelemtns, i.e. vectors of US  such that 

[A,A.] = X.(A)A.(no sumnation) 

for all A € « . 

(It is known from Lie algebra theory that there 1s, up to a 

constant multiple, just one such root vector.) 

Since ^ -^.i 1s not a root, for i j* j, we have: 

WiWJWWlWIWWI 
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202 ROBERT HERMANN 

[A1,Aj] - 0   for i ;« .1 . 

Similarly, let   A,    be a chain of root vectors for the root 

[A.-.A^] - 0   1 )< j   • 

-X..   We then have 

Also, 

Thus, if we let    '3* (»Z)   be the linear subspace spanned by 

the   A^A^), and let   «0   be   «, we see that   (A0,«*,»') 

forms a Jacobi triple. 

So far   '8   has been a complex Lie algebra.    He can form a real 

subalgebra   W   as the Lie subalgebra generated by the   A. .A^. 

(»0,«+,«')   forms a Jacobi triple in T/. 

9.    EULER-ARNOLD VECTOR FIELDS WHICH ARE TANGENT TO THE JACOBI 

SUBSPACES.    Let  «   be a real Lie algebra and let   ('Ä + ,«",»0) 

be a Jacobi triple of linear subspaces.    Let    ,/   be the associ- 

ated Jacobi subspace of   '0 .    Let   B: 'S ■*'G     be a map, and set: 

V(A) - [B(A),A]    for   A € Ä 

Consider   V   as a vector field on    '6 .    We ask: 

When is   V   tangent to the linear subspace   ,/? 

To answer this question, suppose that   B = B+ + B   + B",   where 

B+'-'V) ,+,-.0 

If   A » A+ + A" + A0 € ^, then 

••^V(A)  - [B+(A)+B0(A)+B"(A),   A+ + A0 + A0] 

• • 
Let us now suppose that the following conditions are satisfied: 

[B+(A),A+] »0 

[B"(A),A"] - 0 
(9.1) 

»,i:-.--,»^.„». ...,*■ .i**j/±.-^m ■k,a-.i^.-i-,.i.^<....-^.,... —-i'iniffiilüi'l 
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THEOREM 9.1.    rf aam'itiono 9.1 arc eatiafled,  then the KuUv- 

Amold veotcr ridd   V(A) = [B(A) ,A]   io tmgmi to the Javohi 

eubopaaa Jf. 

Proof.    CondtHon 9.1 implies that   V((/) c ,/,   which is the 

condition that   ,/   bp tangrnt to ,/. 

10.    JACOBI TRIPLES DEFINED BY AUTOMORPHISMS OF LIE ALGEBRAS. 

Following a suggestion by Victor Kac (private communication), we 

shall now show how Jacobi triples may be defined by automorphisms 

of Lie algebras.    Let  'ft   be a finite dimensional Lie algebra, 

with the complex numbers as field of scalars.    Let   O:'ä -»55  be 

an automorphism of this Lie algebra.    Let   X e C   be an eigen- 

value of   a.    Set: 

'.<?0 => {A € « :o(A) « A} 

«r* = {A e» :o(A) = AA) 

•fi' = {A € » :o(A) » ,\'1A} 

These three subspaces   ('5 , W ,«")    then define a Jacobi 

triple.    This way of defining Jacobi triples is especially natu- 

ral because automorphisms arc classifiable If   'fi   is a seniisimple 

Lie algebra.    The case where the automorphism is of finite order 

would be of particular Interest since Kac has classified them. 

(See Section 5, Chapter X of [20].    It is also shown in this 

reference how such automorphisms are related to graded structures 

on Lie algebras.) 

As an illustration let us construct the automorphism which 

gives rise to the classical Jacobi matrices.    Let   V   be a finite 

dimensional complex vector space.    Let 

V- + v„ 

be a direct sum decomposition of   V   as a direct sum of linear 

subspaces.    Let   A    be a primitive n-th root of unity, i.e. 

An = 1.    but   XJ M   for   j = 2,....n-l  . 

Set 

M ,. ..fc,-, ..jy.   ■■»„■^^.ii-vlllfcir-..   ,,.>.:^-lF,«-.|r-M-:>-'-»'^Mji|Ml|i| 
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a(v) • X^v   for   v € V,,    j = 1..,.. ,n . 

Let   'ß   be    L(V,V),    the Lie algebra of all  linrnr maps: 

o   defines a linear map (also denoted .is    0 oi     % -* •/; 

■1 

V. 

Set 

o(A) • oAo       for A e '« 

»0 » {A € » :o(A) - A) 

'/7+ » {A €» :o(A) = ?A» 

<a' » {A €« :o(A) = X'U)  , 

We see that 

/(Vj) c Vj   for   j 

«-(V^cV^    . 

l,...,n 

These relations Imply that   'S*  «0 + «+ + «"    is a linear 

subspace of   ®  which is represented by Jacobi matrices in the 

classical sense, when a basis is chosen for   V   consisting of 

elements In the subspaces   V,. 

11.    FLASCHKA MAPS CONSTRUCTED FROM JACOBI TRIPLFS.    Suppose 

now that   ®   is a reductive Lie algebra.    Notice that the Euler- 

Arnold objects differ from the Flaschkan objects only In that the 

values of the former type of map do not necessarily lie in the 

appropriate orthogonal complement.    In this section we shall see 

what sort of compatibility condition between the graded struc- 

tures, and the Ad6-invariant symmetric bilinear form   .tii&x'ß ■* R 

must be Imposed in order to assure that the Flaschka conditions 

are to be satisfied. 

Suppose that   (#',#*#)   Is a Jacobi triple of linear sub- 

spaces of the Lie algebra   %?.    In addition, lot us suppose that 

T: lß-*'6   Is a linear map such that the following condition is 

satisfied: 

F. 

i.«fc   ...■■^....   L.-   .     ■.■'■.... ..^awM^tw.^-v^^^-^ 
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TCA^Ag]) - [TCAg).^^)] 

aKTCA^.KAg)) -*(A1.A2) 

for A, ,AZ C « • 

T(T{A)) - A for A € 2? 

203 

(11.1) 

(11.2) 

Ü1.3) 

REMARK. Notice that, If » 1s a Lie algebra of matrices, 

then T(A) ■ transpose of A as a matrix, will have these prop- 

erties. 
Let us now suppose that the Jacobl triple, the T-operatlon and 

the form a  satisfy the following conditions: 

T(/) = /+ 

TU0) - / 

«(/'./) ' 0 

(11.4) 

(11.5) 

(11.6) 

(11.7) 

Let us now define the Unoar subspacc   / of   «   as the set of 

all elements of   «  of the following form: 

j s j- + J() + T(J"). (11.8) 

where   J% J0   are arbitrary elements of    Z",/.    ^flne the 
linear map     B:  Jt * 'S    by the following formula: 

BU) = J-- no") ^ 

THEOREM 11.1.    rU. ^ M^'l H J^ln U .9 >"" '^ 

[B(J).J] €/ ,    and 

B(J) € #'   • 

/or   Oejr,    anä.Uh    f    tHe or^jonat ^t^i of 

with respect to the form     A . 

^i,^:,.^..^J:'^...^l^^.-.^V.-.^^-^-.^^-»^^^-^.^'«-"-j-;^*^g^^ 
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The pronf of these statements is now an easy consequence of 
our assumptions. 

12.    CONCLUSIONS.    We have introduced a difforpnt geometric 
way of constructing the ordinary differential equations models 
which generalize the Toda Lattice, and which miqht. be candidates 
lor "Inltyrdblt' or    porllally ifitt'jCot/ifc    "»yU':!:,-,,    inslfcoö of 
starting off with a Lie group given, as in the previous work, we 
have begun at one stage more general, with an "absolute parallel- 
ism."   In the case where this parallelism does come from a Lie 
group, we have codified some of the algebraic conditions which 
seem to be Involved.   There is also potential for extension to 
the field-theoretic situations by means of generalizations to 
infinite dimensional manifolds, groups and Lie algebras. 

REFERENCES 

1. Toda, M., Studies of a nonlirwav lattice. Physics Reports, 
sec C Physics Letters 8 (1975) 1-125. 

2. Flaschka, H.    On the Toda lattice T, Physics Rev. B9 
(1974) 1924-1925,    II Prog. Theo. Phy. 51  (1975) 703-716. 

3. Arnold, V., Sur la geometric differenticltr dc.B grmpes 
de Lie de dimension infinie et eea appliaaticns a I'hydro- 
dyncmique dee fluide parfaite, Ann. Inst. Fourier Grenoble 15(1) 
(1966) 319-361. 

4. Kostant, B., The solution to a neneralir.cd Toda Lattice 
and representation theory, M.I.T. preprint, 1979. 

5. Hermann, R., Toda Lattices, Cosympleotia Manifolds, Baak- 
lund Transformations and Kinks,   Part A, (Interdisciplinary 
Mathematics, vol. 15), Math Sei Press, Brookline, MA, 1977. 

6. Cartan, E., Lcaons sur lee invariants intearmutt.    Hermann, 
Paris (1922). 

I.    Hermann, R., Differential Geometry and the Calaulus of 
Vartations, Academic Press, New York, 1969.    Second Edition, 
Math.Sd Press, 1977. 

8. Hermann, R., Left invariant geodesies and classiaal 
meahmios on rranifolds, J. Math. Phys.  13 (1972) 460. 

9. Hermann, R., Speatrum-generatinq alaebras in alassiaal 
meahmios, I and II, J. Math. Phys. 13" (1972) 833, 878. 

10.   Hermann, R., Geometry, Physoio and Syctcr"a, Marcel Dekker, 
New York, 1973. 

--^.fc... i...,.*^.,,. 



W/rv irr rrvrvytinrr 
ii mmpn     " 

TODA LATTICES 207 

11. Hermann, R., Geodesioa of singular Riemannim mtirioo. 
Bull. Amer. Math. Soc. 79 (1973) 780-782. 

12. Bogoyavlensky, 0.  \,, On porturbatiom of the periodic 
Toda lattio«, Comm. Math. Phys. 51 (1976) 201-209. 

13. Moser, J., Finitely Many Maeo Pointo on the Line Under 
the Influenoe of an Exponential Potenital--an Integrable System, 
Sattel1e Rencontres, 1974. 

14. Olshanetzkl, M. A., and A. M. Perelmonov, Complcteluinte- 
gvable Hamiltonian Byetema oonneoted Dith eemi-simple Lie olge- 
bi-aa, Inv. Math. 37 (1976) 93-108. 

15. van Moerbecke, P., The apeotrm of the Jaoobi matriaeo, 
Inv. Math. 37 (1976) 45-61. 

16. Kazhdan, 0., B. Kostant, and S. Sternberg, Hamiltonian 
group actions and dunamiaat uyatems of Calogero type, Comm.  Pure 
andAppl. Math.  31 (1978) 481-508. 

17. Hermann, R., Some differential geometric aopeate of the 
Lagrange vcwiational problem,  Illinois J. Math. 6 (1962) 634-673. 

18. Hermann, R., P.  Cartan'e geometric theory of partial 
differential equationa; Advances In Math. 1 (1965) 265-317. 

19. Hermann, R., Lie Algebras and Quantum Meahanica, 
W. A. Benjamin, New York, 1970. 

20. Helgason, S., Differential Geometry, Lie Groups and 
Symmetric Spaces, Academic Press, New York", 1979. 

21. Arnold, V., Mathemtiaal Methode of Classical Mechanics, 
MIR, Moscow, 1975.    Springer Graduate Texts In Math., No. 60, 
Springer-Verlag, New York. 

THE ASSOCIATION FOR PHYSICAL AND SYSTEMS MATHEMATICS 
54 JORDAN RD. 
BR00KLINE, MASSACHUSETTS 

me. 

MMl^iitfaaaBMaaijfciMiMlt siiSMamM' jjaäHjjjülifi üüfiM 


